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Abstract. Statistical methods like principal component analysis and cluster ana-
lysis are not new in identi� cation and classi� cation for biological features.
However, the success of utilizing these two methods in discriminating late blight
infected tomatoes (caused by Phytophthora infestans) from healthy ones has not
yet been reported. This paper demonstrates the capability of using principal
component analysis and cluster analysis for identi� cation and discrimination of
spectral characteristics of late blight infections on tomatoes. Our results show
that the � rst principal component is related to the spectral properties of healthy
tomatoes, and the second principal component is related to the spectral properties
of infected tomatoes. Cluster analysis shows that a reasonable discrimination is
obtained when the centroid distance of clusters is above 0.5. The consistent results
from both principal components analysis and cluster analysis indicate that late
blight infection on tomatoes can be successfully detected with remote sensing
when the infection severity reaches middle to late stages. Moreover, spectral ratio
analysis provides us with the way to identify the sensitive spectral wavelengths
where distinguishable re� ectance values can be observed for unique biological
features. Understanding the light responses to unique biological features may
increase discrimination accuracy by reducing the impact of soil background
on spectral measurements, and utilizing the most sensitive wavelengths for
discriminating between healthy and diseased tomatoes.

1. Introduction
Detecting plant health conditions is of primary importance to agricultural � eld

management (Bryant and Moran 1999). It is common that the health conditions of a
crop are assessed by direct methods such as scouting and checking plant canopies in
the � eld. However, this method is time and labour intensive and usually results in a
cost increase for disease monitoring in large-scale farming. It is also possible that diseased
crops examined by human eyes are only detected at the later stages of infection, which
is too late to employ proper disease control measures to recover crop productivity .

With the advancing airplane and satellite technologies there has been a growing
interest in using optical remote sensors for mapping and monitoring crop diseases
in real-time at the local scale (Bryant and Moran 1999, Deguise et al. 1998). Several
studies have demonstrated the possibility of using remote sensing to discriminate
between healthy plants, and unhealthy or diseased plants (Lillesand and Kiefer 1994,
Holden and LeDrew 1998, Holden et al. 1999, Leblanc et al. 1999). In these applica-
tions, the ability to diVerentiate spectra of diVerent materials is essential (Bowman
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M. Zhang et al.1096

et al. 1999, Deguise and Staenz 1999, Winter and Schlangen 1999). Perhaps even
more diYcult is the ability to discriminate spectra of diVerent infection stages.

Late blight is an aggressive plant disease caused by the fungus Phytophthora
infestans. Symptoms of late blight � rst appear on the leaves as water-soaked areas
that rapidly enlarge to form purple-brown, oily blotches. On the lower side of the
leaves, rings of grayish white mycelium and spore-forming structures may appear
around the blotches. Entire leaves die and infections quickly spread to petioles and
young stems. Infected fruit turn brown but remain � rm unless infected by secondary
decay organisms. These symptoms usually begin on the shoulders of the fruit because
spores land on the fruit from above. Late blight is found when humid conditions
coincide with mild temperatures for prolonged periods. Most rapid development
occurs when humidity is above 90% and the average temperature is in the range of
16°C to 26°C. Losses can be severe if weather and � eld conditions are ideal for
disease development and wind can spread the spores to other plants.

Our hypothesis was that plants in diVerent infection stages have distinct spectral
re� ectance responses based on the presence (in diVerent magnitudes) or absence of
chlorophyll, and water content contained in plant leaves. Using spectra of tomato
plants infected with late blight, we combined the spectral characteristics of chloro-
phyll and water in visible and near infrared wavelengths to test this hypothesis for
possible application of remote sensing in tomato disease detection.

The objective of the study was to investigate the feasibility of using satellite or
airborne passive high spectral resolution radiometers to detect plant stresses caused
by late blight infection in visible and near infrared (NIR) wavelengths. We expect
the results of the study can be utilized to gain an understanding of light responses
to infected plants, and to classify images for disease management in precision farming.

2. Materials and Methods
2.1. Data collection

We collected spectral data in four � elds (South Central Murphy, Meyer 119,
Doud 15, and Meyer 206) near King City in the Salinas Valley, California. These
� eld spectra were collected at about 1m above the tomato canopies that had various
infection stages of late blight under actual � eld conditions. The spectroradiometer-
GER2600 with a single � eld-of-view of 23 degrees was used for the data collection.
This instrument was con� gured to acquire spectra over the 350–2500 nm range with
a spectral sampling interval of 2 nm. In addition to collecting spectra of the canopies
with various infection stages, we also collected soil spectra at each � eld.

We rated late blight infection severity into � ve stages (table 1): stage 1—one
lesion on one or two canopy leaves, stage 2—one lesion on more than two canopy
leaves, stage 3—two lesions on one to many canopy leaves, stage 4—two lesions on

Table 1. Late blight infection stages and symptoms.

Infection stages Symptoms

LB1 One lesion on one or two canopy leaves
LB2 One lesion on more than two canopy leaves
LB3 Two lesions on one to many canopy leaves
LB4 Two lesions on over half the canopy leaves
LB5 Lesions dominate canopy leaves
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Spectral discrimination of Phytophthora infestans infection on tomatoes 1097

over half the canopy leaves, stage 5—lesions dominate the canopy leaves. Accordingly
stage 1 represents the light infection and stage 5 the severe one.

2.2. Data analysis
2.2.1. Data organization

After examining the spectral data, we found that we had collected more spectra
of healthy tomato canopies than the spectra of tomato canopies with infection stages
3 and 4. In order to minimize the possible statistical impact of the uneven numbers
of spectra within each � eld on the analysis results, we generated a new data set by
combining data from all four � elds. Some of the original spectra looked abnormal
and may well not represent the infected canopy conditions. Hence, we applied the
following two rules to clean the spectra before further analysis. First, spectra from
one type of vegetation should only contain random errors so that all spectra curves
for this type of vegetation uniformly concentrate in a limited curve buVer within two
standard deviations. If a spectrum was outside this buVer, it was considered abnormal,
and was removed from the data pool. Second, spectra from one type of vegetation
should all have a similar shape or curve structure. If a spectrum had a diVerent
shape or curve structure, we again removed it from the data set for further analysis.

Using these two rules, we interactively preprocessed the collected data and
obtained a new data set with 66 spectral samples. Among these 66 spectra, 22 were
for healthy tomato plants (� gure 1(a)), 11 for late blight infection stage 1 (� gure 1(b)),
12 for stage 2 (� gure 1(c)), 17 for stage 3 (� gure 1(d)), and 4 for stage 4 (� gure 1(e)).
No spectra were obtained for stage 5. The sample size for each stage was big enough
for conducting a statistical analysis even though they were not equal. This guaranteed
that the analysis results would not be signi� cantly impacted by the unequal sample
size of each stage.

Comparison of soil spectra indicated that there was little diVerence from location
to location. Almost no diVerences between the wavelengths of 400–680 nm were
observed among the collected soil spectra. The largest soil re� ectance diVerence was
only 0.06% of the re� ectance values found in the wavelengths of 750–1000 nm.
Therefore, we could reasonably assume that the in� uence of the soils in these
locations was minimal. Moreover, the exposure of soils in the canopy at the time of
spectra collection was also minimal. These two features justi� ed the removal of soil
spectra from the principal component analysis.

2.2.2. Principal component analysis
Principal component analysis (PCA) has been eVectively used in many studies

as a data reduction technique (Dunteman 1984). Since the method preserves the
total variance while minimizing the mean square approximate errors, it is also often
used as a means of identifying the data with dominant features (Fung and LeDrew
1987). The basic function of PCA is to transform the original data set into a
substantially smaller and easier to interpret set of uncorrelated variables that repres-
ent most of the information in the original data set (Dunteman 1984). After PCA,
the principal components can be derived from the original data set. The � rst compon-
ent accounts for the maximum proportion of the variance in the original data set,
and the subsequent orthogonal components account for the maximum remaining
variance and so forth (Fung and LeDrew 1987). We used PCA to reduce the spectral
samples to represent/investigate the association of the spectral properties of healthy
tomato plants and infected tomato plants. Taking each spectrum as a random
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M. Zhang et al.1098

(a) (b)

(d)(c)

(e)

Figure 1. Spectra samples of (a) healthy tomatoes, (b) late blight infection stage 1, (c) late
blight infection stage 2, (d ) late blight infection stage 3, (e) late blight infection stage 4.

variable, we ran PCA on the 66 spectra for the identi� cation of the principal
components, which were expected to be able to discriminate the healthy tomato
plants from the diseased ones.

2.2.3. Cluster analysis
Cluster analysis is the generic name for a multivariate procedure of clumping

similar objects into categories, enabling identi� cation of the basic structure in the
data set. No training or prior knowledge of data distribution is required for the
analysis. Therefore, clustering can be a subjective, exploratory procedure. Despite
the obvious bene� ts of cluster analysis with respect to identifying structures, there
are two related concerns in this method: (1) determining the number of clusters and
(2) deciding whether a solution is signi� cant (Holden and LeDrew 1998). However,
in addition to pre-knowledge and intuition about the subject, no other methods can
be applied statistically to determine or select the number of clusters or methods. For
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Spectral discrimination of Phytophthora infestans infection on tomatoes 1099

our analysis, we selected the Centroid method based on the squared Euclidean
distance as the condition for grouping samples into clusters.

2.2.4. Spectral ratio analysis
Following the question of spectral discrimination, there is an additional question

in applying remote sensing to detect plant stresses: what are the wavelengths that
are sensitive to plant stresses caused by late blight infection? We assumed that soil
has approximately the same impact on each spectral measurement in the � eld. Our
data set of this study indicated the minimal in� uence of soils on canopy spectra. We
can therefore expect that by calculating spectral ratios, the impact of soil on spectral
measurements can be removed or reduced to a minimum. Wavelength sensitivity
analysis would then be improved. Because our objective was to investigate discrimina-
tion between spectra of healthy and late blight infected plants, we used the spectra
of healthy plants as the denominator when calculating ratio spectra. If any two
spectra are similar over the entire spectrum wavelength, we expect to have a ratio
value around 1, which means that the spectrum in the numerator also represents
healthy tomato canopies. If any two spectra are diVerent over the entire spectrum
wavelength, we expect to have ratio values farther from 1, which means that the
spectrum in the numerator would represent infected canopies. The more the ratio
values deviate from 1.0, the severer the infections would be.

Therefore, taking the mean spectrum of healthy plants as the denominator, the
ratio spectrum was calculated for each late blight infection stage with its mean
spectrum as the numerator. The formula is:

SRatio=LBMSP/HMSP (1)

where SRatio is the spectral ratio, HMSP is the mean spectrum of healthy plants,
and LBMSP is the mean spectrum of late blight infected plants. Figure 2 illustrates
the mean spectra of healthy plants, and late blight infected plants with stages 1 to 4.

3. Results
3.1. Principal component analysis

PCA revealed that the � rst eigenvector accounted for 58.73% of the variance of
the original data set and the second for 35.51%. All of the other eigenvectors only
accounted for the remaining 5.76%. Therefore, the � rst two eigenvectors can be
regarded as the principal components and the rest can be dropped from further
analysis. The distribution of eigenvalues among the eigenvectors is illustrated in
� gure 3(a). PCA also showed that the � rst principal component had a high, positive
linear correlation to the canopy spectra of healthy tomato plants, and the second
principal component to the late blight infections in stage 3 and stage 4. The values
of the two principal components are displayed in � gure 3(b). The percentage of
spectral samples with positive and negative linear correlation with the two principal
components is given in table 2, which clearly shows that each principal component
represents the amount of spectra samples under various infection stages. Based on
this percentage, the discrimination ability of the principal components can be
interpreted.

As the principal components are orthogonal to each other, and each spectral
sample can be represented by the linear combination of these principal components,
it can be seen that the entire set of spectral samples are dominated by these two
principal components. Since the � rst principal component has positive correlation
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M. Zhang et al.1100

Figure 2. Mean spectra of the healthy and infected tomato plants at infection stages 1, 2, 3,
and 4.

with 100% samples of healthy plants and negative correlation with 77% and 100%
samples of infected plants at stages 3 and 4 respectively, we can interpret it as a
representation of healthy plants. Similarly, the second principal component represents
the severely infected plant samples due to its high percentage of samples having
positive correlation with infection stages 3 and 4 and negative correction with healthy
plants. Thus, we can conclude that healthy plants and late blight infected plants can
be successfully discriminated using these two principal components. Table 2 also
clearly indicates that more reliable discrimination can be obtained when the infected
tomato plants are at infection stage 3 or above. It is more diYcult to discriminate
healthy tomato plants from infected tomato plants if the infection has only reached
stages 1 or 2.

3.2. Cluster analysis
The cluster tree for classi� cation is displayed in � gure 4. Based on the cluster

tree graph and the corresponding spectral samples, we performed statistics to estab-
lish the association between each cluster and each type of spectra. Table 3 gives the
results of the statistics at three thresholds.

When the distance of 0.5 is used as the cut-oV point, all the 66 spectra samples
can be grouped into � ve clusters. The � rst cluster contains 76% of spectra samples
with healthy tomato plants, 16% with the infected plants of stage 1 and 8% stage 2.
Therefore, it can be said that this cluster is a representation of healthy tomato plants
mixed with some light infection ones. Since the second cluster contains 14% of
spectra samples with the healthy tomato plants, 24% with the infected plants of
stage 1, 19% stage 2 and 43% stage 3, respectively, it can logically be said that it
represents the infected plants of stage 3. The third cluster represents infected plants
at stages 2 and 3 because it contains 18% of spectra samples with the infected plants
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Spectral discrimination of Phytophthora infestans infection on tomatoes 1101

(a)

(b)

Figure 3. (a) Eigenvalues for each principal component. (b) The � rst and second eigenvectors,
i.e., the � rst two principal components.

of stage 1, 41% stage 2 and 41% stage 3. The fourth cluster represents infected
plants at stages 3 and 4 due to its high percentage of the two spectra samples (67%
and 33% respectively) . The � fth cluster is surely a representation of severe infection
plants because it only contains the spectra samples of infection plants at stage 4.

If the threshold 0.75 is used, three clusters are found. The � rst cluster contains
76% of spectra samples with healthy tomato plants, 16% with the infected plants of
stage one and 8% stage two. Thus it is mainly a cluster of healthy plants. The second
cluster contains 9% of spectra samples with healthy tomato plants, 21% with the
infected plants of stage 1, 27% stage 2 and 43% stage 3. Therefore, it mainly
represents the moderate to severe infection plants. The third cluster is composed of
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M. Zhang et al.1102

Table 2. Percentage of spectral samples with positive (P) and negative (N) linear correlation
to the two principal components.

First principal Second principal
Infection stages component (PC1) component (PC2)

Healthy plants P~100% P~23%
Stage 0 N~0% N~77%
Late blight infection P~45% P~10%
Stage 1 N~55% N~90%
Late blight infection P~42% P~25%
Stage 2 N~58% N~75%
Late blight infection P~23% P~65%
Stage 3 N~77% N~35%
Late blight infection P~0% P~100%
Stage 4 N~100% N~0%

Figure 4. Cluster tree for classi� cation of the spectral samples. OB 1–22 refer to the healthy
tomato samples, OB 23–33 to late blight infection stage 1 samples, OB 34–45 to stage
2 samples, OB 46–62 to stage 3 samples, OB 63–66 to stage 4 samples.

two spectra samples with equal percentages of infected plants of stages 3 and 4.
Thus, it represents the severe infection plants.

If we use the distance of 1 as threshold, only two clusters are found. The � rst
cluster contains 38% of spectra samples with healthy tomatoes, 19% with the infected
plants of stage 1, 19% stage 2, and 24% stage 3. Thus, it represents the healthy and
light infection plants. However, the percentage of healthy plants is low. This makes
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Spectral discrimination of Phytophthora infestans infection on tomatoes 1103

Table 3. Percentage of spectral samples for each cluster under diVerent thresholds.

Thresholds
(Euclidean distance
squared) Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

0.5 H—76% H—14% LB1—18% LB3—67% LB4—100%
LB1—16% LB1—24% LB2—41% LB4—33%
LB2—8% LB2—19% LB3—41%

LB3—43%

0.75 H—76% H—9% LB3—50%
LB1—16% LB1—21% LB4—50%
LB2—8% LB2—27%

LB3—43%

1.0 H—38% LB3—50%
LB1—19% LB4—50%
LB2—19%
LB3—24%

Note: H refers to healthy tomato plants. LB1, LB2, LB3, and LB4 to infected plants at
infection stages 1, 2, 3, and 4 respectively.

it diYcult to interpret. The second cluster contains 50% of spectra samples with the
infected plants of stage 3 and 50% stage 4.

Based on the above analysis, it can be concluded that the classi� cation with
threshold of 0.75 is the best. Accordingly, three clusters are generated (table 3), which
can provide the best discrimination of the samples with various infection stages.
Since cluster 1 represents 76% spectra samples of healthy tomato plants, it should
be interpreted as the representation of healthy plants. Similarly, cluster 2 represents
infected plants at stage 3, and cluster 3 represents the infected plants at both stages
3 and 4.

Thus, our cluster analysis indicates that the healthy tomato plants can be spec-
trally separated from infected plants when late blight infection reaches stages 3 and 4.
There is no cluster in which late blight stages 1 and 2 have dominant percentages.
Thus, we can conclude that diseased plants at stages 1 and 2 are diYcult to separate
from healthy ones. This � nding is consistent with that derived from PCA results.

3.3. Spectral ratio analysis
All the related spectral ratios are illustrated in � gure 5. Large magnitude diVer-

ences among spectral ratios can be observed for the wavelength range of 700–
1300 nm. The results of ratio analysis showed the following wavelengths that are
most sensitive to the degree of late blight infections on tomatoes and can be better
utilized for discriminating healthy and late blight infected plants:

1. At the wavelengths around 543 nm, the � rst ratio valley (� gure 5) observed in
the range is possibly corresponding to the green peak

2. At the wavelengths around 663 nm, the � rst ratio peak (� gure 5) next to the
� rst valley is likely corresponding to chlorophyll absorption

3. At the wavelengths around 761 nm, the second ratio valley (� gure 5) is
probably corresponding to the ‘red’ edge

4. At the wavelengths around 1993 nm, the last peak (� gure 5) is probably
corresponding to the water absorption
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M. Zhang et al.1104

Figure 5. Mean ratio spectra of the infected samples with healthy spectrum as denominator.

Spectral diVerences among various infection stages are greater in these wave-
lengths. In other words, these wavelengths are more sensitive than others in terms
of late blight infection detection through remote sensing. During the pathogen
penetration and germination process, tomato plants react to the stimulation and
infection of the disease by producing diVerent levels of chlorophyll and other pigment
concentrations. The change of these biochemistries on the plants leads to the diVer-
ences in light responses of plant canopies, hence, the diVerent re� ectance resulted
from the canopies with various infections. This distinct feature can then be utilized
for discrimination of late blight infected tomato plants from the healthy ones and
discrimination of late blight infection stages among the infected plants.

4. Discussion
Remote sensing technology oVers a unique tool for monitoring disease develop-

ment along with weather conditions (Lillesand and Kiefer 1994). The separation of
the spectra of healthy tomato plants from infected ones with infection stage 3 or
above is reliable due to the consistency of the results from both PCA and cluster
analysis. Similar successful examples have been found by Holden and LeDrew (1998)
who used spectral properties to discriminate healthy and unhealthy corals. Much
work has been done to identify spectral properties for agricultural crops (Daughtry
and Walthall 1998) and the infected crops of barley and beans (Lorenzen and Jensen
1989, Malthus and Madeira 1993). Blazquez and Edwards (1983) reported spectral
re� ectance of tomato and potato diseases under the controlled environment. They
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Spectral discrimination of Phytophthora infestans infection on tomatoes 1105

concluded that the greatest changes in re� ectance were detected in the chlorophyll
absorption and near infrared regions of the spectrum, which is consistent with what
we observed in our results for the degrees of late blight infection on tomatoes.
Although some laboratory work has been done in characterizing the spectral proper-
ties for tomato, potato, beans and barley diseases (Blazquez and Edwards 1983,
Lorenzen and Jensen 1989, Malthus and Madeira 1993), we � rst reported the
successfulness of discriminating the spectra of healthy tomato plants from the infected
ones under the � eld conditions.

This work provides a better understanding of the spectral properties of late blight
infection on tomatoes and their light responses on tomato canopies. The identi� ed
wavelengths in the green region and near infrared region that are sensitive to the
change of chlorophyll content and water content in the ratio analysis are consistent
with previous work documented by Gitelson and Merzlyak (1997, 1998). The infected
plants often contain lower chlorophyll levels that leads to a low photosynthesis rate
and lower water content. The changes of these pigments and water content are often
indicators of plant stress, which can be used to monitor the conditions of crop
growth and site characteristics.

Though we are able to spectrally discriminate healthy tomatoes from infected
tomatoes, we also understand the diYculties due to the similarity among vegetation
spectra and other environmental in� uences. In this study, soil spectra were similar
from � eld to � eld and the canopy was at full or close to full canopy closure when
the spectra samples were collected. This provides a premise that our analysis would
not be signi� cantly in� uenced by soil background. However, the in� uence of soil
background should be taken into consideration in the spectral analysis where large
variability of soils exists and crop growth is largely aVected by the environmental
conditions. Sample size can be another important factor in deriving the conclusions.
In this study, though there were some diVerences among spectra for the healthy
tomato plants and infected ones with stages 1 and 2, they were not statistically
signi� cant enough to lead to a bias in the results of PCA and cluster analysis. We
suspect that the small spectra sample size (Ahlbom 1993) for the infected tomato
plants with stages 1 and 2 may be a factor for not being able to separate the infected
plants at early infection stages, namely stages 1 and 2. If we could obtain more � eld
spectra with late blight infection stages 1 and 2, we believe that the larger sample
size will increase the statistical power to better discriminate the infected tomatoes at
the early stage from healthy ones. However, without veri� cation from larger sample
size spectra for these early infection stages, the current observed spectral diVerences
for the plants of infection stages 1 and 2 from healthy tomatoes could be due to
random errors. We cannot statistically draw a conclusion that the spectra of the
infected plants at stages 1 and 2 are signi� cantly diVerent from the spectra of healthy
plants. Therefore, further research is needed with larger samples of the early infection
stages in order to be certain that the infection at stages 1 and 2 can also be
discriminated from healthy plants.

Nonetheless, the infection at stage 3 or above can be successfully discriminated
from healthy plants. In fact, around infection stage 3, some of the spots in the � eld(s)
are already severely infected by late blight, and at this stage economic losses start
to occur. The developed relationships between the late blight infection on tomatoes
and their spectral properties identi� ed in this study could enable us to use the
extracted information as a training set to classify the remotely sensed images for
disease detection. The synoptic view and the repetitive cover aVorded by satellite
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M. Zhang et al.1106

data allow multi-temporal observation of seasonal changes. If farmers have access
to the classi� ed disease map for their � elds of tomatoes, they would be in a better
position for monitoring/controlling late blight infection in their � elds. Farmers could
then order pesticide applications accordingly to protect their crop productions.

It is known that late blight survives on volunteer plants and on abandoned plant
materials. Sporangia serve as the primary inoculums and are carried by wind to
other plants (Agrios 1997). Applying protective pesticides at that time cannot cure
the infected canopies in the infected spots, but it can prevent the spread of the disease
to other locations within the � eld or to other � elds. Hence, farmers can control the
disease in the infected areas and protect the areas that are not aVected, to increase
the productivity and the quality of the tomato fruits. In this way, farmers can have
a direct understanding of the � eld conditions and the exact location and extent of
the infection. Farmers can precisely and economically apply pesticides to the speci� c
infected area. This technology can help farmers to increase the productivity of
tomatoes and minimize the environmental impacts by precisely applying pesticides
both spatially and temporally. However, to make best use of such information, it is
necessary to combine it with other data. The need for a marriage between remote
sensing and ground truth, spatial and statistical analysis techniques is readily appar-
ent and is made manifest through the adoption of Geographic Information System
(GIS) and databases within all crop assessment methodologies. These systems and
methodologies represent an essential tool for the enhancement of traditional disease
management techniques. This research provided a � rst step in best utilizing the
developed technologies for precision disease management in sustainable agriculture.

5. Conclusions
Using remotely sensed canopy re� ectance data, healthy tomato plants can be

successfully discriminated from the plants of late blight infection when the infection
reaches stage 3 or above. The spectral bands of green to red and near infrared are
associated with the important spectral features of late blight infection on tomato
plants. These wavelength regions include the green peak wavelengths at around
543 nm, chlorophyll absorption wavelengths at around 663 nm, the ‘red edge’
wavelengths at around 761 nm, near infrared wavelengths 761–1300 nm, and water
absorption wavelengths at around 1993 nm.

The results indicated that remote sensing could be used to identify, and possibly
diagnose, infections of tomato canopies. By understanding the spectral response of
economically important diseases, we can use the technology to provide farmers with
information to better protect their crops and reduce farming costs. From an environ-
mental viewpoint, such information will help reduce environmental pollutions from
pesticide applications by more accurately and precisely applying pesticides to crop
� elds. In the coming decades, agriculture will no doubt take advantage of the
available technologies in farm management. This research lays a foundation for
precise disease management once high-resolution remote sensing systems are com-
mercially available.
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